<u>Algorithms in the Real World</u> <u>Generator & parity check matrices</u>

Error Correcting Codes II

- Cyclic Codes
- Reed-Solomon Codes

Reed-Solomon: Outline

A (n, k, n-k+1) Reed Solomon Code: Consider the polynomial $p(x) = a_{k-1} x^{k-1} + \dots + a_1 x + a_0$ <u>Message</u>: $(a_{k-1}, \dots, a_1, a_0)$ <u>Codeword</u>: $(p(1), p(2), \dots, p(n))$ To keep the p(i) fixed size, we use $a_i 2 GF(p^r)$ To make the p(i) distinct, $n < p^r$

Any subset of size k of (p(1), p(2), ..., p(n)) is enough to reconstruct p(x).

Reed Solomon: Outline

A (n, k, 2s +1) Reed Solomon Code:

Can <u>detect</u> 2s errors

Can <u>correct</u> s errors

Generally can correct α erasures and β errors if α + 2\beta - 2s

Reed Solomon: Outline

Correcting s errors:

- Find k + s symbols that agree on a polynomial p(x). These must exist since originally k + 2s symbols agreed and only s are in error
- There are no k + s symbols that agree on the wrong polynomial p'(x)
 - Any subset of k symbols will define p'(x)
 - Since at most s out of the k+s symbols are in error, p'(x) = p(x)

Reed Solomon: Outline

Systematic version of Reed-Solomon

 $p(x) = a_{k-1} x^{k-1} + \dots + a_1 x + a_0$ <u>Message</u>: $(a_{k-1}, \dots, a_1, a_0)$ <u>Codeword</u>: $(a_{k-1}, \dots, a_1, a_0, p(1), p(2), \dots, p(2s))$

- This has the advantage that if we know there are no errors, it is trivial to decode.
- Later we will see that version of RS used in practice uses something slightly different than p(1), p(2), ...
- This will allow us to use the "**Parity Check**" ideas from linear codes (i.e. Hc[⊤] = 0?) to quickly test for errors.

RS in the Real World

 $(204, 188, 17)_{256}$: ITU J.83(A)² $(128, 122, 7)_{256}$: ITU J.83(B) $(255, 223, 33)_{256}$: Common in Practice

 Note that they are all byte based (i.e. symbols are from GF(2⁸)).

Performance on 600MHz Pentium (approx.):

- (255,251) = 45Mbps
- (255,223) = 4Mbps
- Dozens of companies sell hardware cores that operate 10x faster (or more)
 - (204,188) = 320Mbps (Altera decoder)

Applications or Reed-Solomon Codes

- **<u>Storage</u>**: CDs, DVDs, "hard drives",
- <u>Wireless</u>: Cell phones, wireless links
- Sateline and Space: TV, Mars rover, ...
- **<u>Digital Television</u>**: DVD, MPEG2 layover
- High Speed Modems: ADSL, DSL, ...

Good at handling burst errors. Other codes are better for random errors.

- e.g. Gallager codes, Turbo codes

RS and "burst" errors

Let's compare to Hamming Codes (which are "optimal").

	code bits	check bits
RS (255, 253, 3) ₂₅₆	2040	16
Hamming (2 ¹¹ -1, 2 ¹¹ -11-1, 3) ₂	2047	11

They can both correct 1 error, but not 2 random errors.

- The Hamming code does this with fewer check bits However, RS can fix 8 contiguous bit errors in one byte

- Much better than lower bound for 8 arbitrary errors

$$\log\left(1 + \binom{n}{1} + \dots + \binom{n}{8}\right) > 8\log(n-7) \approx 88 \text{ check bits}$$

Galois Field

GF(2³) with irreducible polynomial: $x^4 + x + 1$ $\alpha = x$ is a generator

α	×	010	2
α ²	X ²	100	3
α ³	x + 1	011	4
α4	x ² + x	110	5
α^5	$x^2 + x + 1$	111	6
α ⁶	x ² + 1	101	7
α7	1	001	1

Will use this as an example.

Discrete Fourier Transform

Another View of Reed-Solomon Codes α is a primitive nth root of unity ($\alpha^n = 1$) – a generator

$$T = \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \alpha & \alpha^2 & \cdots & \alpha^{n-1} \\ 1 & \alpha^2 & \alpha^4 & \cdots & \alpha^{2(n-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \alpha^{n-1} & \alpha^{2(n-1)} & \cdots & \alpha^{(n-1)(n-1)} \end{pmatrix} \qquad \begin{pmatrix} c_0 \\ \vdots \\ c_{k-1} \\ c_k \\ \vdots \\ c_{n-1} \end{pmatrix} = T \cdot \begin{pmatrix} m_0 \\ \vdots \\ m_{k-1} \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

$$m = T^{-1}c$$

Inverse DFT

The Discrete Fourier Transform (DFT)

DFT Example

 α = x is 7th root of unity in GF(2⁸)/x⁴ + x + 1 Recall α = "2", α ² = "3", ..., α ⁷ = 1 = "1"

$$T = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & \alpha & \alpha^2 & \alpha^3 & \alpha^4 & \alpha^5 & \alpha^6 \\ 1 & \alpha^2 & \alpha^4 & \alpha^6 & & & \\ 1 & \alpha^3 & \alpha^6 & & & \\ 1 & \alpha^4 & \ddots & & & \\ 1 & \alpha^5 & & & & \\ 1 & \alpha^6 & & & & \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 2^2 & 2^3 & 2^4 & 2^5 & 2^6 \\ 1 & 3 & 3^2 & 3^3 & & \\ 1 & 4 & 4^2 & & \\ 1 & 5 & \ddots & & \\ 1 & 6 & & & \\ 1 & 7 & & & 7^6 \end{pmatrix}$$

Should be clear that $c = T \notin (m_0, m_1, ..., m_{k-1}, 0, ...)^T$ is the same as evaluating $p(x) = m_0 + m_1 x + ... + m_{k-1} x^{k-1}$ at n points.

Decoding

Why is it hard?

Brute Force: try k+s choose k + 2s possibilities and solve for each.

Cyclic Codes

<u>A code is cyclic if:</u> $(c_0, c_1, ..., c_{n-1}) \ge C) (c_{n-1}, c_0, ..., c_{n-2}) \ge C$

Both Hamming and Reed-Solomon codes are cyclic. Note: we might have to reorder the columns to make the code "cyclic".

We will only consider linear cyclic codes. <u>Motivation</u>: They are more efficient to decode than general codes.

Generator and Parity Check Matrices

<u>Generator Matrix</u>:

A k x n matrix **G** such that: $C = \{m \notin G \mid m 2 \sum^k\}$ Made from stacking the basis vectors <u>Parity Check Matrix</u>: A (n - k) x n matrix H such that:

 $C = \{v \ge \sum^n | H \notin v^T = 0\}$

Codewords are the nullspace of H

These always exist for linear codes $H \notin G^T = 0$

Generator and Parity Check Polynomials

Generator Polynomial:

A degree (n-k) polynomial g such that: $C = \{ m \notin \boldsymbol{g} \mid m \ 2 \sum^{k} [x] \}$ such that $\mathbf{g} \mid \mathbf{x}^n - 1$ Parity Check Polynomial: A degree k polynomial h such that: $C = \{v \ge \sum^{n} [x] \mid h \notin v = 0 \pmod{x^{n} - 1}\}$

such that $h \mid x^n - 1$

These always exist for linear cyclic codes $h \notin g = x^n - 1$

<u>Viewing g as a matrix</u>

If $g = g_0 + g_1 x + ... + g_{n-k} x^{n-k}$ We can put this generator in matrix form:

$$G = \begin{pmatrix} g_0 & g_1 & \cdots & g_{n-k} & 0 & \cdots & 0 \\ 0 & g_0 & \cdots & g_{n-k-1} & g_{n-k} & \cdots & 0 \\ \vdots & \ddots & & & \ddots & \vdots \\ 0 & 0 & \cdots & g_0 & g_1 & \cdots & g_{n-k} \end{pmatrix}$$

Write $m = m_0 + m_1 x + ... m_{k-1} x^{k-1}$ as $(m_0, m_1, ..., m_{k-1})$ <u>Then c = mG</u>

$$G = \begin{pmatrix} g_{0} & g_{1} & \cdots & g_{n-k} & 0 & \cdots & 0 \\ 0 & g_{0} & \cdots & g_{n-k-1} & g_{n-k} & \cdots & 0 \\ \vdots & \ddots & & & \ddots & \vdots \\ 0 & 0 & \cdots & g_{0} & g_{1} & \cdots & g_{n-k} \end{pmatrix} = \begin{pmatrix} g \\ xg \\ \vdots \\ x^{k-1}g \end{pmatrix}$$

Codes are linear combinations of the rows. All but last row is clearly cyclic (based on next row) Shift of last row is $x^kg \mod (x^n - 1)$ Consider $h = h_0 + h_1x + ... + h_kx^k$ ($gh = x^n - 1$) $- h_0g + (h_1x)g + ... + (h_{k-1}x^{k-1})g + (h_kx^k)g = x^n - 1$ $- x^kg = -h_k^{-1}(h_0g + h_1(xg) + ... + h_{k-1}(x^{k-1}g)) \mod (x^n - 1)$ This is a linear combination of the rows.

<u>Viewing h as a matrix</u>

If $h = h_0 + h_1x + ... + h_kx^k$ we can put this parity check poly. in matrix form:

$$H = \begin{pmatrix} 0 & \cdots & 0 & h_k & \cdots & h_1 & h_0 \\ 0 & \cdots & h_k & h_{k-1} & \cdots & h_0 & 0 \\ \vdots & \ddots & & \ddots & & \vdots \\ h_k & \cdots & h_1 & h_0 & 0 & \cdots & 0 \end{pmatrix}$$

 $Hc^{T} = 0$

Hamming Codes Revisited

The Hamming $(7,4,3)_2$ code.

$$g = 1 + x^{2} + x^{3} \qquad h = x^{4} + x^{2} + x + 1$$

$$G = \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{pmatrix} \qquad H = \begin{pmatrix} 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 \end{pmatrix}$$

$$gh = x^{7} - 1, \quad GH^{T} = 0$$

The columns are reordered from when we previously discussed this code.

Intentionally left blank

Another way to write g

Let $\underline{\alpha}$ be a <u>generator</u> of GF(p^r). Let $n = p^r - 1$ (the size of the multiplicative group) Then we can write a generator polynomial as $g(x) = (x-\alpha)(x-\alpha^2) \dots (x - \alpha^{n-k})$ <u>Lemma</u>: $g \mid x^n - 1$ (a | b, means a divides b) <u>Proof</u>:

- $\alpha^n = 1$ (because of the size of the group)) $\alpha^n - 1 = 0$) α root of $x^n - 1$) $(x - \alpha) | x^n - 1$
- similarly for α^2 , α^3 , ..., α^{n-k}
- therefore $x^n 1$ is divisible by $(x \alpha)(x \alpha^2)$...

Back to Reed-Solomon

Consider a generator $g 2 GF(p^r)[x]$, s.t. $g | (x^n - 1)$ Recall that n - k = 2s (the degree of g) <u>Encode:</u>

m' = m x^{2s} (basically shift by 2s)
 b = m' (mod g)
 c = m' - b = (m_{k-1}, ..., m₀, -b_{2s-1}, ..., -b₀)
 Note that c is a cyclic code based on g
 m' = qg + b
 c = m' - b = qg

Parity check:

 h c = 0 ?

Example

Lets consider the $(7,3,5)_8$ Reed-Solomon code. We use $GF(2^3)/x^3 + x + 1$

α	×	010	2
α ²	X ²	100	3
α ³	x + 1	011	4
α4	x ² + x	110	5
α^{5}	$x^2 + x + 1$	111	6
α ⁶	x ² + 1	101	7
α7	1	001	1

Example RS $(7,3,5)_{8}$

$$g = (x - \alpha)(x - \alpha^{2})(x - \alpha^{3})(x - \alpha^{4})$$

$$= x^{4} + \alpha^{3}x^{3} + x^{2} + \alpha x + \alpha^{3}$$

$$h = (x - \alpha^{5})(x - \alpha^{6})(x - \alpha^{7})$$

$$= x^{3} + \alpha^{3}x^{3} + \alpha^{2}x + \alpha^{4}$$

$$gh = x^{7} - 1$$

Consider the message: 110 000 110

$$m = (\alpha^{4}, 0, \alpha^{4}) = \alpha^{4}x^{2} + \alpha^{4}$$

$$m' = x^{4}m = \alpha^{4}x^{6} + \alpha^{4}x^{4}$$

$$= (\alpha^{4} x^{2} + x + \alpha^{3})g + (\alpha^{3}x^{3} + \alpha^{6}x + \alpha^{6})$$

$$c = (\alpha^{4}, 0, \alpha^{4}, \alpha^{3}, 0, \alpha^{6}, \alpha^{6})$$

= 110 000 110 011 000 101 101

010
100
011
110
111
101
001

ch = 0 (mod
$$x^7 - 1$$
)

<u>A useful theorem</u>

<u>Theorem</u>: For any β , if $g(\beta) = 0$ then $\beta^{2s}m(\beta) = b(\beta)$ <u>Proof</u>: $x^{2s}m(x) = g(x)q(x) + d(x)$ $\beta^{2s}m(\beta) = g(\beta)q(\beta) + b(\beta) = b(\beta)$

<u>Corollary</u>: $\beta^{2s}m(\beta) = b(\beta)$ for $\beta 2 \{\alpha, \alpha^2, ..., \alpha^{2s}\}$ <u>Proof</u>:

 $\{\alpha, \alpha^2, ..., \alpha^{2s}\}$ are the roots of g by definition.

Fixing errors

<u>Theorem</u>: Any k symbols from c can reconstruct c and hence m

Proof:

We can write 2s equations involving m (c_{n-1} , ..., c_{2s}) and b (c_{2s-1} , ..., c_0). These are $\alpha^{2s} m(\alpha) = b(\alpha)$ $\alpha^{4s} m(\alpha^2) = b(\alpha^2)$

 $\alpha^{2s(2s)} m(\alpha^{2s}) = b(\alpha^{2s})$

We have at most 2s unknowns, so we can solve for them. (I'm skipping showing that the equations are linearly independent).

Efficient Decoding

I don't plan to go into the Reed-Solomon decoding algorithm, other than to mention the steps.

