
Algorithms in the Real WorldAlgorithms in the Real World
Generator & parity check matrices

Error Correcting Codes II
– Cyclic Codes

R d S l C d– Reed-Solomon Codes

Reed-Solomon: OutlineReed Solomon: Outline
A (n, k, n-k+1) Reed Solomon Code:
Consider the polynomial

p(x) = ak-1 xk-1 + L + a1 x + a0

M : () Message: (ak-1, …, a1, a0)
Codeword: (p(1), p(2), …, p(n))

To keep the p(i) fixed size we use ai 2 GF(pr)To keep the p(i) fixed size, we use ai 2 GF(p)
To make the p(i) distinct, n < pr

Any subset of size k of (p(1), p(2), …, p(n)) is enough
to reconstruct p(x).

Reed Solomon: OutlineReed Solomon: Outline
A (n, k, 2s +1) Reed Solomon Code:

k 2s

Can detect 2s errors
C

n

Can correct s errors
Generally can correct α erasures and β errors if

α + 2β · 2sα + 2β 2s

Reed Solomon: OutlineReed Solomon: Outline
Correcting s errors:
1. Find k + s symbols that agree on a polynomial p(x).

These must exist since originally k + 2s symbols
agreed and only s are in erroragreed and only s are in error

2. There are no k + s symbols that agree on the
wrong polynomial p’(x)
- Any subset of k symbols will define p’(x)
- Since at most s out of the k+s symbols are in

error p’(x) = p(x)error, p (x) = p(x)

Reed Solomon: OutlineReed Solomon: Outline
Systematic version of Reed-Solomon

p(x) = ak-1 xk-1 + L + a1 x + a0

Message: (ak-1, …, a1, a0)
C d d: (p(1) p(2) p(2s))Codeword: (ak-1, …, a1, a0, p(1), p(2), …, p(2s))

This has the advantage that if we know there are no
errors, it is trivial to decode., .

Later we will see that version of RS used in practice
uses something slightly different than p(1), p(2), …

This will allow us to use the “Parity Check” ideas
from linear codes (i.e HcT = 0?) to quickly test for
errors.errors.

RS in the Real WorldRS in the Real World
(204,188,17)256 : ITU J.83(A)2

(128 122 7) ITU J 83(B)(128,122,7)256 : ITU J.83(B)
(255,223,33)256 : Common in Practice

– Note that they are all byte based Note that they are all byte based
(i.e. symbols are from GF(28)).

Performance on 600MHz Pentium (approx.):
(255 251) 45Mb– (255,251) = 45Mbps

– (255,223) = 4Mbps
Dozens of companies sell hardware cores that Dozens of compan es sell hardware cores that

operate 10x faster (or more)
– (204,188) = 320Mbps (Altera decoder)

Applications or Reed-Solomon CodesApplications or Reed Solomon Codes
• Storage: CDs, DVDs, “hard drives”,
• Wireless: Cell phones, wireless links
• Sateline and Space: TV, Mars rover, …

Di it l T l i i n: DVD MPEG2 l• Digital Television: DVD, MPEG2 layover
• High Speed Modems: ADSL, DSL, ..

Good at handling burst errors.
Other codes are better for random errors.

– e.g. Gallager codes, Turbo codes

RS and “burst” errorsRS and burst errors
Let’s compare to Hamming Codes (which are “optimal”).

code bits check bits
RS (255, 253, 3)256 2040 16
H i (211 1 211 11 1 3) 2047 11

They can both correct 1 error, but not 2 random errors.
Th H i d d hi i h f h k bi

Hamming (211-1, 211-11-1, 3)2 2047 11

– The Hamming code does this with fewer check bits
However, RS can fix 8 contiguous bit errors in one byte

– Much better than lower bound for 8 arbitrary errorsMuch better than lower bound for 8 arbitrary errors

bitscheck 88)7log(8
81

1log ≈−>⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+ n

nn
L

81 ⎠⎝ ⎠⎝⎠⎝

Galois FieldGalois Field
GF(23) with irreducible polynomial: x4 + x + 1
α = x is a generator

α x 010 2
α2 x2 100 3
α3 x + 1 011 4
α4 x2 + x 110 5α4 x2 + x 110 5
α5 x2 + x + 1 111 6
α6 x2 + 1 101 7
α7 1 001 1

Will use this as an example.

Discrete Fourier TransformDiscrete Fourier Transform
Another View of Reed-Solomon Codes
α is a primitive nth root of unity (αn = 1) – a generator

⎟
⎞

⎜
⎛ 1111 L

⎟
⎟
⎞

⎜
⎜
⎛

⎟
⎟
⎞

⎜
⎜
⎛ 00

MM

mc

⎟
⎟
⎟
⎟
⎟

⎜
⎜
⎜
⎜
⎜

= −

−

)1(242

12

1
1

n

n

T ααα
ααα

MOMMM

L

L

⎟
⎟
⎟
⎟

⎜
⎜
⎜
⎜

⋅=
⎟
⎟
⎟
⎟

⎜
⎜
⎜
⎜

−−

0
11

MM

k

k

k m
T

c
c

⎟
⎟

⎠
⎜
⎜

⎝
−−−−)1)(1()1(211 nnnn ααα L

MOMMM

⎟
⎟
⎟
⎟

⎠
⎜
⎜
⎜
⎜

⎝
⎟
⎟
⎟
⎟

⎠
⎜
⎜
⎜
⎜

⎝ − 0

0

1

MM

n

k

c

c

The Discrete
Fourier Transform

(DFT)
cTm 1−=

Inverse DFT (DFT)n rs DF

DFT ExampleDFT Example
α = x is 7th root of unity in GF(28)/x4 + x + 1
R ll “2” 2 “3” 7 1 “1”Recall α = “2”, α2 = “3”, … , α7 = 1 = “1”

⎟
⎟
⎞

⎜
⎜
⎛

⎟
⎟
⎞

⎜
⎜
⎛

65432 2222221

1111111

654321
1111111
αααααα

⎟
⎟
⎟
⎟
⎟

⎜
⎜
⎜
⎜
⎜

=
⎟
⎟
⎟
⎟
⎟

⎜
⎜
⎜
⎜
⎜

= 2

326

441

3331

2222221

63

42

1
1
1

αα
ααα

αααααα

T

⎟⎟
⎟
⎟
⎟

⎠
⎜⎜
⎜
⎜
⎜

⎝
⎟⎟
⎟
⎟
⎟

⎠
⎜⎜
⎜
⎜
⎜

⎝ 6771
61
51 OO

6

5

4

1
1
1

α
α
α

⎠⎝⎠⎝ 7711 α

Should be clear that c = T ¢ (m0,m1,…,mk-1,0,…)T

is the same as evaluating p(x) = m0 + m1x + … + mk 1xk-1is the same as evaluating p(x) m0 m1x … mk-1x
at n points.

DecodingDecoding
Why is it hard?

Brute Force: try k+s choose k + 2s possibilities and
solve for eachsolve for each.

Cyclic CodesCyclic Codes
A code is cyclic if:

(c0, c1, …, cn-1) 2 C) (cn-1, c0, …, cn-2) 2 C

B th H mmin nd R d S l m n d s liBoth Hamming and Reed-Solomon codes are cyclic.
Note: we might have to reorder the columns to make

the code “cyclic”.y .

We will only consider linear cyclic codes.
Motivation: They are more efficient to decode than

general codes.

Generator and Parity Check MatricesGenerator and Parity Check Matrices
Generator Matrix:
A k x n matrix G such that: A k x n matrix G such that:

C = {m ¢ G | m 2 ∑k}
Made from stacking the basis vectorsMade from stacking the basis vectors

Parity Check Matrix:
A (n – k) x n matrix H such that:

C = {v 2 ∑n | H ¢ vT = 0}
Codewords are the nullspace of H

These always exist for linear codes
H ¢ GT = 0H ¢ GT = 0

Generator and Parity Check PolynomialsGenerator and Parity Check Polynomials
Generator Polynomial:
A degree (n k) polynomial g such that: A degree (n-k) polynomial g such that:

C = {m ¢ g | m 2 ∑k[x]}
such that g | xn - 1such that g | x 1

Parity Check Polynomial:
A degree k polynomial h such that:

C = {v 2 ∑n [x] | h ¢ v = 0 (mod xn –1)}
such that h | xn - 1

These always exist for linear cyclic codes
h ¢ g = xn 1h ¢ g = xn - 1

Viewing g as a matrixViewing g as a matrix
If g = g0 + g1x + … + gn-kxn-k

We can put this generator in matrix form:

⎟
⎞

⎜
⎛ −knggg LL10 00

⎟
⎟
⎟
⎟
⎟

⎜
⎜
⎜
⎜
⎜

= −−− knkn ggg
G

MOOM

LL 10 00

Write m = m + m x + m xk-1 as (m m m)

⎟
⎟
⎠

⎜
⎜
⎝ −knggg LL 1000

Write m = m0 + m1 x + … mk-1xk as (m0, m1, …, mk-1)
Then c = mG

g generates cyclic codesg generates cyclic codes

⎟
⎟
⎞

⎜
⎜
⎛

⎟
⎟
⎞

⎜
⎜
⎛ −

xg
g

ggg
ggg kn10

00
00

LL

LL

⎟
⎟
⎟
⎟

⎠
⎜
⎜
⎜
⎜

⎝

=

⎟
⎟
⎟
⎟

⎠
⎜
⎜
⎜
⎜

⎝

=

−

−−−

gx

xg

ggg

ggg
G

k
k

knkn

1
10

10

00

00
M

LL

MOOM

LL

Codes are linear combinations of the rows.
All but last row is clearly cyclic (based on next row)

⎠⎝⎠⎝ − gxggg kn1000

All but last row is clearly cyclic (based on next row)
Shift of last row is xkg mod (xn –1)
Consider h = h0 + h1x + … + hkxk (gh = xn –1)

– h0g + (h1x)g + … + (hk-1xk-1)g + (hkxk)g = xn - 1
– xkg = -hk

-1(h0g + h1(xg) + … + hk-1(xk-1g)) mod (xn –1)
This is a linear combination of the rowsThis is a linear combination of the rows.

Viewing h as a matrixViewing h as a matrix
If h = h0 + h1x + … + hkxk

we can put this parity check poly. in matrix form:

⎟
⎞

⎜
⎛ 00 LL hhh

⎟
⎟
⎟
⎟
⎞

⎜
⎜
⎜
⎜
⎛

= − 00
00

01

01

MNNM

LL

LL

hhh
hhh

H kk

k

⎟
⎟
⎠

⎜
⎜
⎝ 0001 LL hhhk

THcT = 0

Hamming Codes RevisitedHamming Codes Revisited
The Hamming (7,4,3)2 code.

⎟
⎞

⎜
⎛ 0001011 ⎞⎛ 1110100

g = 1 + x2 + x3 h = x4 + x2 + x + 1

⎟
⎟
⎟
⎟
⎞

⎜
⎜
⎜
⎜
⎛

=
0101100
0010110
0001011

G ⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

0011101
0111010
1110100

H

⎟
⎟
⎠

⎜
⎜
⎝ 1011000

⎠⎝ 0011101

gh = x7 – 1 GHT = 0

The columns are reordered from when we previously
discussed this code

gh = x7 – 1, GH = 0

discussed this code.

Factors of xn -1Factors of x 1
Intentionally left blank

Another way to write gAnother way to write g
Let α be a generator of GF(pr).
L t r 1 (th i f th lti li ti)Let n = pr - 1 (the size of the multiplicative group)
Then we can write a generator polynomial as

g(x) = (x-α)(x-α2) … (x - αn-k)g(x) (x α)(x α) … (x α)
Lemma: g | xn – 1 (a | b, means a divides b)
Proof:

– αn = 1 (because of the size of the group)
) αn – 1 = 0
) α root of xn – 1

|) (x - α) | xn -1
– similarly for α2, α3, …, αn-k

– therefore xn - 1 is divisible by (x - α)(x - α2) therefore x - 1 is divisible by (x - α)(x - α) …

Back to Reed-SolomonBack to Reed Solomon
Consider a generator g 2 GF(pr)[x], s.t. g | (xn – 1)
R ll th t k 2 (th d f)Recall that n – k = 2s (the degree of g)
Encode:

– m’ = m x2s (basically shift by 2s)m m x (basically shift by 2s)
– b = m’ (mod g)
– c = m’ – b = (mk-1, …, m0, -b2s-1, …, -b0)
– Note that c is a cyclic code based on g

- m’ = qg + b
- c = m’ – b = qg- c = m b = qg

Parity check:
- h c = 0 ?

ExampleExample
Lets consider the (7,3,5)8 Reed-Solomon code.
W GF(23)/ 3 1We use GF(23)/x3 + x + 1

α x 010 2
2 2 100 3α2 x2 100 3

α3 x + 1 011 4
α4 x2 + x 110 5
α5 x2 + x + 1 111 6
α6 x2 + 1 101 7

7 1 001 1α7 1 001 1

Example RS (7 3 5)8Example RS (7,3,5)8

g = (x - α)(x - α2)(x - α3)(x - α4)
 4 3 3 2 3

α 010
= x4 + α3x3 + x2 + αx + α3

h = (x - α5)(x - α6)(x - α7)
= x3 + a3x3 + a2x + a4

α2 100
α3 011

4 110 x a x a x a
gh = x7 - 1
Consider the message: 110 000 110

α4 110
α5 111
α6 101

m = (α4, 0, α4) = α4x2 + α4

m’ = x4m = α4x6 + α4x4
α7 001

= (α4 x2 + x + α3)g + (α3x3 + α6x + α6)
c = (α4, 0, α4, α3, 0, α6, α6)

 110 000 110 011 000 101 101
ch = 0 (mod x7 –1)

= 110 000 110 011 000 101 101

A useful theoremA useful theorem
Theorem: For any β, if g(β) = 0 then β2sm(β) = b(β)
Proof:

x2sm(x) = g(x)q(x) + d(x)
β2sm(β) (β) (β) b(β) b(β)β2sm(β) = g(β)q(β) + b(β) = b(β)

Corollary: β2sm(β) = b(β) for β 2 {α α2 α2s}Corollary: β m(β) = b(β) for β 2 {α, α , …, α }
Proof:

{α, α2, …, α2s} are the roots of g by definition.{ , , , } g y

Fixing errorsFixing errors
Theorem: Any k symbols from c can reconstruct c

and hence mand hence m
Proof:
We can write 2s equations involving m (cn-1, …, c2s) q g (n 1 2s)

and b (c2s-1, …, c0). These are
α2s m(α) = b(α)
α4s m(α2) = b(α2)α4s m(α2) = b(α2)
…
α2s(2s) m(α2s) = b(α2s)

We have at most 2s unknowns, so we can solve for
them. (I’m skipping showing that the equations
are linearly independent).are linearly independent).

Efficient DecodingEfficient Decoding
I don’t plan to go into the Reed-Solomon decoding

l ith th th t ti th talgorithm, other than to mention the steps.

Syndrome
Calculator

Error
Polynomial

Berlekamp

Error
Locations

Chien

Error
Magnitudes

Forney

Error
Correctorc m

Berlekamp
Massy

Chien
Search

Forney
Algorithm

